On a Foliation-Covariant Elliptic Operator on Null Hypersurfaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Ricci Coefficients of Null Hypersurfaces with Time Foliation in Einstein Vacuum Space-time: Part Ii

This paper is the sequel of [9]. We prove several decomposition results which are crucial to the proof of the main result in [9].

متن کامل

Dirac Operator on Embedded Hypersurfaces

New extrinsic lower bounds are given for the classical Dirac operator on the boundary of a compact domain of a spin manifold. The main tool is to solve some boundary problems for the Dirac operator of the domain under boundary conditions of Atiyah-Patodi-Singer type. Spinorial techniques are used to give simple proofs of classical results for compact embedded hypersurfaces.

متن کامل

Hypersurfaces of a Sasakian space form with recurrent shape operator

Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.

متن کامل

On the Foliation of Space-time by Constant Mean Curvature Hypersurfaces

We prove that the mean curvature τ of the slices given by a constant mean curvature foliation can be used as a time function, i.e. τ is smooth with non-vanishing gradient.

متن کامل

Elliptic Structures on Weighted Three-dimensional Fano Hypersurfaces

We classify birational maps into elliptic fibrations of a general quasismooth hypersurface in P(1, a1, a2, a3, a4) of degree ∑ 4 i=1 ai that has terminal singularities.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2014

ISSN: 1073-7928,1687-0247

DOI: 10.1093/imrn/rnu131